An Edge Correlation Based Differentially Private Network Data Release Method
نویسندگان
چکیده
منابع مشابه
Differentially Private Data Release through Multidimensional Partitioning
Differential privacy is a strong notion for protecting individual privacy in privacy preserving data analysis or publishing. In this paper, we study the problem of differentially private histogram release based on an interactive differential privacy interface. We propose two multidimensional partitioning strategies including a baseline cell-based partitioning and an innovative kd-tree based par...
متن کاملDifferentially Private Distributed Data Release for Data Mining
In this paper, we study the privacy threats caused by distributed data sharing and present an algorithm to securely integrate person-specific sensitive data from multiple data owners, whereby the integrated data still retains the essential information for supporting general data exploration or a specific data mining task, such as classification analysis.
متن کاملDifferentially Private Set-Valued Data Release against Incremental Updates
Publication of the private set-valued data will provide enormous opportunities for counting queries and various data mining tasks. Compared to those previous methods based on partition-based privacy models (e.g., k-anonymity), differential privacy provides strong privacy guarantees against adversaries with arbitrary background knowledge. However, the existing solutions based on differential pri...
متن کاملA Simple and Practical Algorithm for Differentially Private Data Release
We present a new algorithm for differentially private data release, based on a simple combination of the Exponential Mechanism with the Multiplicative Weights update rule. Our MWEM algorithm achieves what are the best known and nearly optimal theoretical guarantees, while at the same time being simple to implement and experimentally more accurate on actual data sets than existing techniques.
متن کاملISPE: Adaptive Differentially Private Data Release and Query Estimation
Although the mechanism of differential privacy provides a strong guarantee for privacy protection, it remains a key open problem to find efficient algorithms for non-interactive differentially private data release while maintaining good utility. In this paper, we propose an adaptive framework, called ISPE, to release differentially private histogram data through an interactive differentially pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Security and Communication Networks
سال: 2017
ISSN: 1939-0114,1939-0122
DOI: 10.1155/2017/8408253